On the Current Status of Post-Quantum Cryptography

JCF Webinar Peter Pessl

The quantum computer world

Quantum computers

- Use quantum mechanical effects for computation
- Universal quantum computers expected in 15-20 years

2016: 5-qubit by IBM (online accessible)

2017: 50-qubit by IBM

2019: 53-qubit by Google ("quantum supremacy")

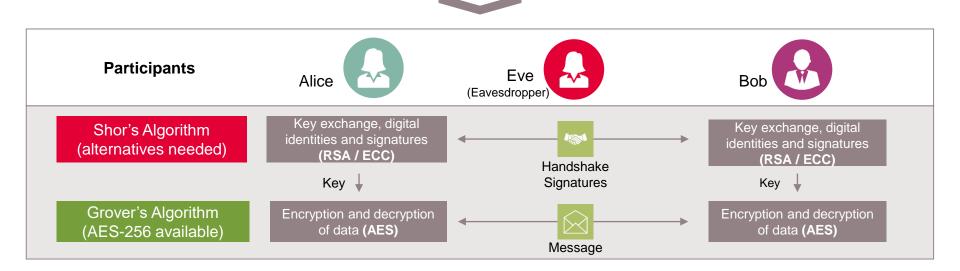
2020: 28-qubit by IBM (better "quantum volume")

2021: 127-qubit by IBM

- Goal: increase number of **stable** quantum bits
- May lead to breakthroughs in AI, chemical simulation, optimization, cryptography and cryptanalysis

Funding and commercial landscape

- > EU: €1 billion quantum technologies flagship
- › Germany: €650 million quantum initiative
- Market for QC hardware: \$6.2 billion by 2025 (*)


(*) According to ResearchAndMarkets.com

Cryptographic Landscape

- > Public-Key Cryptography (RSA, ECC) is the basis for **key exchange, digital identities and signatures**
- > Symmetric cryptography (AES) is used for bulk data encryption

The threat of quantum computers to cryptography

Quantum cryptanalysis on a universal quantum computer

Currently used asymmetric cryptosystems (RSA/ECC) are completely broken using Shor's algorithm

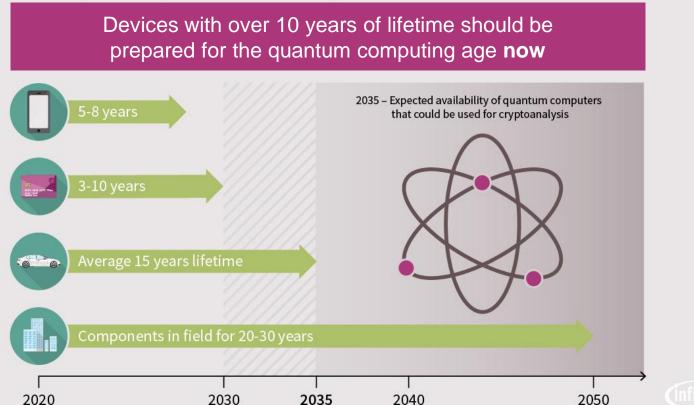
- > Classical world (currently): ECC-256 and RSA-3072 have **128-bit** security
- > Quantum world (in 15-20 years): ECC-256 and RSA-3072 have almost **no** security

Security level for **symmetric** cryptography is **halved** by **Grover's algorithm**

- > Classical world (currently): AES-128 has 128-bit security
- Quantum world (in 15-20 years): AES-128 has only 64-bit security

Quantum world (in 15-20 years)

Heavily affected: RSA, ECDSA, ECDH


Affected: AES-128, 3DES **Currently considered safe:**

AES-256, SHA256*, SHA512, SHAKE256, SHA3-512, ...

* Preimage resistance

Timeline

Post-quantum cryptography and quantum cryptography are not the same

Post-Quantum Cryptography

- New conventional cryptography deployable without quantum computers
- Believed to provide security against classical and quantum computer attacks
- NSA announced a transition to post-quantum cryptography in 2015

Quantum Cryptography

- Mainly Quantum Key Distribution (QKD)
 to secure communication using quantum mechanics
- Security relies on quantum mechanics not computational assumption
- Physical requirements like fiber-optical cable
- NSA discourages use of QKD

As the leading provider of security solutions, Infineon is actively pursuing intensive research on **post-quantum cryptography**

Post-quantum cryptography: the options

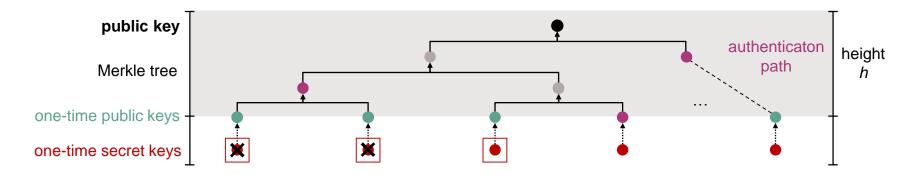
Large landscape of alternatives

- Families of schemes, grouped based on common underlying hard-to-solve mathematical problem (hard even for quantum computers)
- Previous (non quantum secure) problems:
 Integer Factorization (RSA), Discrete Logarithm (ECC)
- Each family offers different advantages/disadvantages.

Family	Description					
Hash-based	Problem: "Inverting" a Hash-functionWell established and already standardizedStateful schemes, number of signatures limited					
Lattice-based	Problem: Solving approximate linear equationsgood performance and reasonable sizesongoing debates about security					
and others	Isogeny-based, Code-based, Multivariate-Quadratic-based, Symmetric-ZKP-based,					

HBS high-level overview

Key Generation


- Generate a set number of hash-based **one-time key pairs**: each one must only be used once!
- Combine them in a binary tree (hash two children to receive parent) to receive **public key**

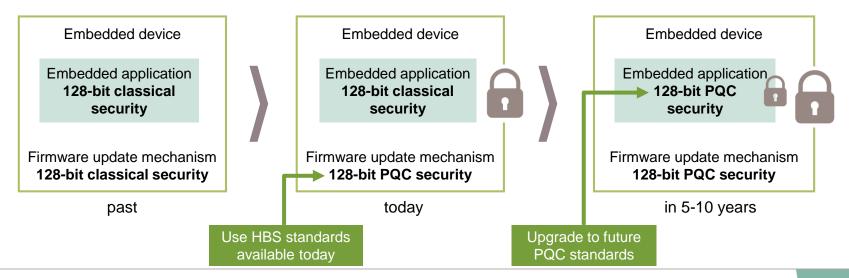
Signing

- Sign the message using first unused one-time key pair
- Compute the authentication path: allows to recompute the tree up to the public key
- Signature is composed of the message signature and the authentication path

Verification

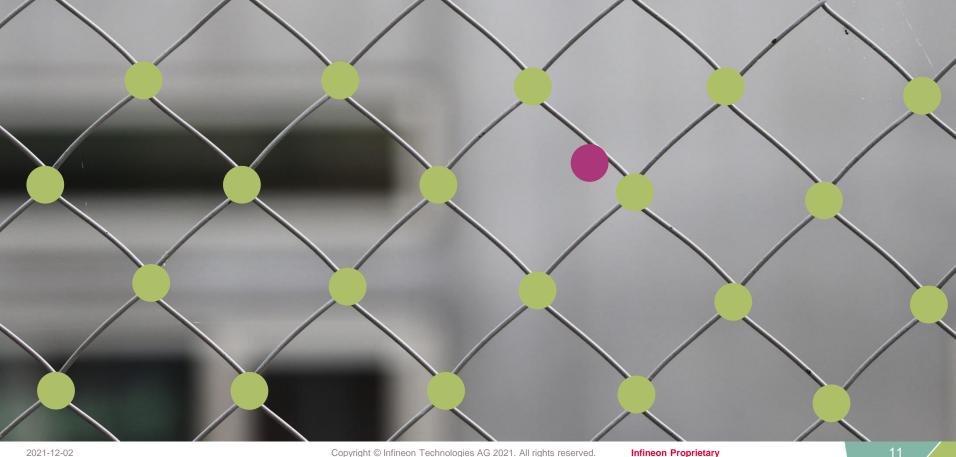
> Verify message signature, recompute public key using authentication path

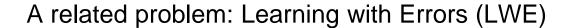
HBS applications



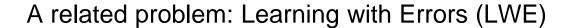
Caveats

- > The number of possible signatures is fixed and needs to be chosen for key generation.
- > State (counter) needs to be maintained (beware of backups, multiple signing parties, fault attacks, ...)


Suitable applications:


Single signer, predictable number of signatures, security needed now: Firmware Updates

Lattice-based cryptography


Solving a system of linear equations (\mathbb{Z}_{13} = integers mod 13)

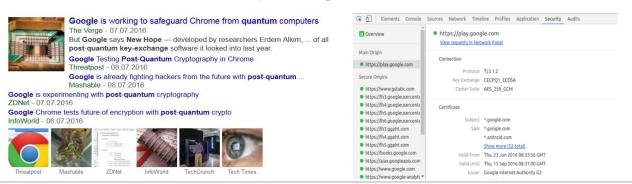
	ļ	pub	lic		secret	pu	ıblio	3
$\mathbb{Z}_{13}^{7 imes4}$			×4 3		$\mathbb{Z}_{13}^{4 imes 1}$	Z	Z ^{7×2}	1
	4	1	11	10	6		4	
	5	5	9	1 (Use Gaussian	_	8	
	3	9	0	10	Use Gaussie elimination	_	1	
	1	3	3	2	11		10	
	12	7	3	4			4	
	6	5	11	4			12	
	3	3	5	0			9	

Green is given; Find (learn) red

Infineon Proprietary

Solving of a system of linear equations with (small) noise

ı	pub	lic		Se	ecre	t	SE	ecre	t		pι	ıbli	C
	\mathbb{Z}_1^7	×4 3		, , , , , , , , , , , , , , , , , , ,	$\mathbb{Z}_{13}^{4 imes 1}$	L					7	Z ₁₃	1
4	1	11	10									5	
5	5	9	1	×		+				_		8	
3	9	0	10			1						0	
1	3	3	2									11	
12	7	3	4									4	
6	5	11	4									11	
3	3	5	0									7	


Green is given; Find (learn) red

Lattice-based cryptography

- LBC has proven to be highly flexible:
 key exchange, signatures, fully homomorphic encryption
- Efficient, with a reasonable footprint: Most suitable class for embedded devices
- First large-scale experiments in TLS:
 CECPQ1/ CECPQ2(b) by Google and Cloudflare

Infineon Proprietary

The NIST process

Round 1 (69 schemes) Start: Dec 2017 Round 2 (26 schemes) Start: Jan 2019 Round 3 (15 schemes) Start: Jul 2020

Draft standards: **2022-24**

The National Institute of Standards and Technology (NIST) has started a standardization effort:

Competition-like process

2021-12-02

- Researchers can submit key exchange, PKE, signature schemes
- > Selection metrics: "security", "cost", "algorithm and implementation characteristics"
- Ongoing evaluation and discussion by experts (academia, industry, standardization bodies)
- > Public mailing list/forum: https://groups.google.com/a/list.nist.gov/g/pqc-forum

Nov 2017 Deadline for submissions and start of Round 1

Jan 2019 Round 2 candidates announced

Jul 2020 Start of Round 3 with finalists (and alternate schemes)

End of 2021 Announcement of first algorithms to be standardized (planned)

2022-2024 Draft standards available

The NIST process is a global effort https://csrc.nist.gov/projects/
post-quantum-cryptography

Infineon Proprietary

Current status of PQC standardization

	Lattice-Based	Code-Based	MQ-Based	Symmetric/ Hash	Isogenies
NIST PQC process Public-Key Encryption/ KEMs	KYBER SABER NTRU FrodoKEM NTRU Prime	Classic McEliece BIKE HQC			SIKE
NIST PQC process Signature Schemes	DILITHIUM plan to pick only one		Rainbow GeMSS	Picnic SPHINCS+	
NIST hash-based signature Stateful Signature Schemes		NIST Speci	ial Publication 800-208	XMSS LMS	(Stateful Hash)

- **bold**: Finalists. Most promising to fit the majority of use cases and most likely to be ready for standardization soon.
- *italic*: Alternates. Potential candidates for future standardization, but more analysis needed.
- > First picks this year, but process will keep on going (4th round for alternates, new call for proposals for signature schemes)

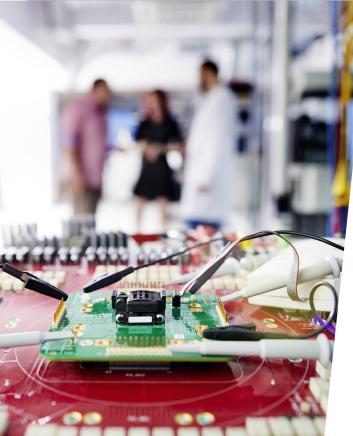
 $\hbox{NIST PQC process:} \ \underline{\hbox{https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions}$

NIST hash-based signature "fast track": https://csrc.nist.gov/Projects/stateful-hash-based-signatures

The Homestretch: the beginning of the end of the NIST PQC 3rd Round: https://pqcrypto2021.kr/download/program/2.2_PQCrypto2021.pdf

- Positive: runtime for lattice-based schemes is very good, some ms (pure software, no side-channel protection)
- Negative: high memory requirements (public keys, ciphertexts, NVM, RAM)

Scheme	pk	ctxt	Gen	Enc	Dec
Kyber768	1184	1088	744,136	898,630	838,939
Saber	992	1088	645,222	820,799	774,055
ntruhrss701	1138	1138	149,737,679	375,948	867,921
SIKEp503	378	402	67,365,114	110,843,233	117,990,911
Curve25519 (ECC)	64	64		894,391	



Fuji, Aranha: Curve25519 for the Cortex-M4 and Beyond

- Cards operate in a potentially adverse environment, need to secure against implementation attacks (fault attacks, side-channel attacks)
- PQC schemes come with novel challenges
 - new attack paths
 - new countermeasures needed
- Highly active research area (academia and industry)
- Goal: efficient and holistic protection approach, with anticipation of future attacks

We need to build applications on top of cryptographic schemes!

- PQC schemes are not always drop-in replacements:
 - Some protocols require schemes with a Diffie-Hellman property
 - Currently no direct DH analogue in the NIST process
 - Adaptation is likely needed
- Shifting costs: PQ signatures are more expensive than KEMs (runtime, size)
 - Replacement of signatures with KEMs?
 - Possible for, e.g., online authentication, but needs protocol adaptation
 - Demonstrated in Cloudflare's KEMTLS experiment
- Standardization of new or adapted protocols/applications needed

KEMTLS experiment: https://blog.cloudflare.com/kemtls-post-quantum-tls-without-signatures/

Challenge: Migration

- RSA and ECC are used almost everywhere (big investment)
- Replacements are not fully usable in production yet (standardization etc.)
- Important: keep PQC in mind!
- Crypto Agility:

 anticipate updates of cryptography
 and provide update mechanism,
 consider effects of PQC (key sizes...)

Conclusion and call to action

- Post-quantum cryptography is needed to secure a quantum computer world
- First standards are ready (HBS) or will appear soon
- Prepare to transition to a quantumsafe cryptography
- Provide applications with crypto agility and upgrade to standardized PQC algorithms in the near future

Part of your life. Part of tomorrow.